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ABSTRACT

In this paper we illustrate the solution of
diffused channel waveguides, the effect of
electrodes for rib waveguides, and calculation of
coupling length for a directional coupler problem
using the vector H-field finite element method
along with infinite elements and a penalty method.
We also present solutions of discontinuities for
optical waveguides by combining vector finite
element method and least square boundary residual
methods. Some basic discontinuity steps, such as
vertical misalignment, change of width, and change
of rib height for rib waveguides are illustrated
here.

INTRODUCTION

The finite element method is one of the most
powerful and versatile methods for the accurate
solution of a wide variety of optical waveguide
problems [1-3]. This method is capable of
considering waveguide with arbitrary cross-section
and material distribution in the transverse plane,
where most of the alternative methods are unable to
handle such a general problem. A vector H-field
formulation considers truly hybrid mode without any
fundamental approximation and can tackle general
anisotropic materials like LiNbO,, only limited in
being lossless. Earlier we have introduced infinite
elements [U4] to extend the problem domain up to
infinity without introducing artificial boundary
walls, which is very useful for open type optical
waveguides. We have also used a penalty method [5]
to force divergence free field conditions to
eliminate spurious solutions and improve
eigenvectors quality. We are here presenting a
novel technique to solve such a wide variety of
discontinuity problems - by combining the vector H-
field finite element method to solve for
eigenvalues and eigenvectors of many modes with
field matching at the discontinuity plane, which is
done by accurate least square boundary residual
method. In this paper we are also presenting the
analyses of a few types of the basic
discontinuities involving rib waveguides.

FINITE ELEMENT METHOD
In the finite element method we first

discretise the entire problem domain into a finite
number of triangular subregions, called elements
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[a]d.
functions Hy, Hy, and H, are defined by a set of
polynomials over each element in the transverse
plane. In the original variational form [4] it
finds the stationary solution for the frequency for
a given propagation constant. The vector program
can also be switched to the approximate scalar TE
or TM mode solution for the convenience of faster
and more automatic solution.

Infinite Elements

We have used infinite elements around the orthodox
finite domain boundary. Inside these infinite
elements we consider exponential decay in outward
directions to represent field components that are
continuous functions over the whole unbounded
cross-section. This allows us to use the orthodox
(finite) mesh divisions most efficiently. The decay
parameters are automatically calculated in the
first run of the program and can be used for
subsequent refined solutions.

Penalty Method

We have imposed a divergence free constraint on the
H-field by using a penalty technique [5,6]. A
variable penalty parameter imposes the divergence
free constraint in a least-squares sense. This
technique does not take any additional computer
space, but removes non-physical spurious solutions
and improves the eigenvector quality appreciably

[s1.

Computer Solution

When the extremum functional is minimised with
respect to the nodal field components, it generates
a set of linear algebraic eigenvalue equations. We
have taken advantage of the extreme sparsity of the
matrices by storing only the nonzeros of the
matrices. We used the efficient subspace iteration
technique for sparse matrices, taking advantage of
the symmetry of the transformed real matrices.

LEAST SQUARE BOUNDARY RESIDUAL METHOD

For the calculation of scattering coefficients
from a junction of dissimilar waveguides we have
used the least square boundary residual method
[7,8] which matches field continuity conditions
over the junction plane in a least square sense.
This powerful method provides guaranteed
convergence and minimises the error in a global
sense. We can consider as many modes as we wish in
both sides of the discontinuity plane. Then this
method provides the amplitudes of all the modes
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propagated or radiated, transmitted or reflected,
so as to have the least error in matching the
continuity conditions of the fields over the
junction plane.

Piscontinuity Solution

The vector finite element method is used to
calculate as many modal eigenvectors as we wish to
consider on both sides of the discontinuity plane.
Here the modal eigenvectors are the three
components of the H-field at all the nodal points
of each "element". We calculate for E and H the
field cross products [8] between different modes by
integrating over all elements numerically. Finally
a Singular Value Decomposition subroutine
calculates the stationary solution of the modal
coefficients to have the least error in matching
the field continuity conditions over the junction
plane.

RESULTS

Waveguide Solutions

In this part we have shown the capabilities of
the finite element method by presenting solutions
for different types of optical waveguides and
devices.

a) Diffused channel waveguide: In this we

illustrated the solution of diffused channel

waveguide. For this example we considered the

Gaussian y-dependence of refractive index, although

different types of diffusion in both the transverse

directions is possible. The refractive indices at

the guide top, bulk substrate, and cladding are

2,2913, 2.2853, and 1.0 respectively. Fig.1 shows

the variation of normalised propagation constant, b

( or V of ref. 1), for the HY,, and HY,, modes for
different guide width, when the diffusion depth was

2.47 um. It shows that for W= 3um, single mode

operation was for wavelength between 0.52 to 0.86

um. When the guide width increased to 6 um this

range changed 0.75 um to 1.0 um, Similarly when the

guide width was decreased to 2 um then single mode

operation was for A from 0.40 um to 0.76 um. It is

not shown here, but when we have changed the

diffusion depth to 3 um then single mode operation

was between A=0.555um to 0.95 um for W= 3um.

b) Effect of electrode: In this section we have

illustrated the effect of an electrode above or

below a rib waveguide., In this example we have

considered that the bottom electrode extends under

the whole substrate but the top electrode is only

above the rib and supported on a buffer material.

For this example we have considered the guide,

substrate, and cladding refractive indices were

3.44, 3.434, and 1.0 respectively, where the buffer

refractive index was varied. The rib was 5 um wide

and 1 um high, the guide slab was 2.0 ym thick and

the operating wavelength was 1.15 um., Fig. 2

illustrates the effect of the position of the two

electrodes on the normalised propagation constant,

b, for both HX , and HY,, modes. As the electrodes
are placed close to the rib top or bottom of the

guide slab, b for the HX,, mode increases, whereas
for HY,, mode b decreases. The effect of the

electrode 1is also to increase the magnitude of the
Hy field at the electrode location for HX,, mode
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Fig.1 Single mode operation of diffused channel
waveguides.
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Fig.2 Effect of top and bottom electrodes for a rib
waveguide for HX, and HY, modes.

but forces the Hy field to zero for the HY,, mode.
In the above example the buffer refractive index

was 3.434, Fig. 3 illustrates the effect of the top

electrode position for the HX,, mode for different
buffer materials. As the buffer refractive index

decreases, magnetic field above the guide also

decreases, thus reducing the effect of electrode

placement.

c) Directional coupler: In this section we have

presented the analysis of a directional coupler

problem. Here the separation distance, s, between

two identieal rib waveguides are varied. In this

example the guide, substrate and cladding

refractive indices were 3.41, 3,3, and 1.0

respectively. The rib was 4 um wide and 0.1 um high

and the guide slab was 0.6 um thick. Fig. 4 shows

the variation of the coupling length between the

guides with the separation distance, s, for two

different wavelengths 1,15 um and 1.3 um.
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Fig.3 Effect of top electrode for different buffer
refractive indices for HX, mode.
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Fig.4 Variation of Coupling Length, Lc with guide
separation, s, for a rib directional coupler.

Discontinuity Solutions

a) Vertical misalignment: In this section we have
considered two identical rib waveguide joined
together with a vertical misalignment. For this
example, guide, substrate, and cladding refractive
indices were 3.4406, 3.4145 and 1.0 respectively.
The ribs were 20 um wide and 5.0 um high, the
guiding slabs were 0.5 um thick and the operating
wavelength was 1.55 um. These multimode guides can
support about 44 in total of quasi TE and quasi TM
modes with different x and y dependences. In this
example we have considered that HY,, mode of unit
power amplitude is incident from side 1. At the
discontinuity plane many modes are generated to
satisfy the boundary conditions and they are
propagated or radiated away from the junction. Fig.
5 jllustrates the variation of amplitudes of the
transmitted HY,, mode, and generated and
transmitted HY,, and HY,, modes with the vertical
misalignment.
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Fig.5 Vertical misalignment between two identical
rib waveguides.

b) Change in width: In this section we have
considered two guides differing in width which are
joined together. In this example we have considered
guide, substrate, and cladding refractive indices
were 3.4406, 3.4145, and 1.0 respectively. Rib
heights were 1.0 um, guiding slab thicknesses were
0.5 um and the wavelength was 1.55 um. An Hy,, mode
of unit power was incident from side 1, its width
kept fixed ( in this example either 20 um or 12 um).
Fig. 6 illustrates the variation of the power
transmitted in side 2 by the HY,, mode with the
change in width of side 2. Extension of this type of
problem by considering many successive changes in
width, we can analyse taper optical waveguide or a
bend section.
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Fig.6 Change in width between two rib waveguides.

¢) Change in rib height: In this section we have
considered junction between two rib waveguides
where rib heights were not the same. Here the




guide, substrate and cladding refractive indices
were 3.U4, 3,434 and 1.0 respectively. The rib
widths were 5.0 um, guide slab thicknesses were 2.0
um and wavelength considered was 1.15 pm. In this
example we have considered the HX , mode of unit
power incident on the discontinuity plane from side
1 where rib height was fixed as 1.0 um. Fig. 7
ililustrates the variation of power transmitted by
the HX,, mode in side 2 with the change of rib
height in side 2. Extension of this type of problem
by considering a periodic change of rib height may
represent gratings or optical filters.
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Fig.7 Change of rib height between two rib
waveguides.

CONCLUSION

In this paper first we have illustrated vector
H-field finite element solutions for a few .optical
waveguides. This method, taken along with infinite
elements and the penalty method is suitable for a
wide varieties of optical waveguides [1,3].
Previously we have also considered [1] waveguides
where the guide axes were not the same as the
optical axes. For the directional coupler problems
the guides may not be symmetric or identical. It is
possible to extend this method to analyse electro-
optic devices. Guides with small loss can be
analysed by a perturbation technique or for guides
with considerable loss (or gain) by changing the
variational formulation to a suitable one.
Combining all these techniques with finite element
method we may be able to analyse more complicated
optical devices such as lasers or electro-optic
switches and modulators.

In this paper we have also illustrated the
analyses of different types of discontinuities
between two rib waveguides, but this technique can
be equally applied to all types of optical
waveguides such as diffused channel waveguide or
optical fibres. Also the discontinuity may not be a
single type such as vertical or horizontal or
longitudinal misalignment but any combination of
them or two totally different types of guides or
devices. Similarly there may not be a single
discontinuity step but multiple steps, irregular or
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periodie. Combining all these capabilities, it may
be possible to analyse a wide varieties of
structures from the simple design of an optimum
guide coupler to devices such as tapers, bends, y-
junctions, gratings or filters.
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