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ABSTRACT

versity College, London, U.K.

In this Paper we illustrate the solution of
diffused channel waveguides, the effect of
electrodes for rib waveguides, and calculation of

coupling length for a directional coupler problem

using the vector H-field finite element method

along with infinite elements and a penalty method.

We also present solutions of discontinuities for
optical waveguides by combining vector finite

element method and least square boundary residual

methods. Some basic discontinuity steps, such as

vertical misalignment, change of width, and change
of rib height for rib waveguides are illustrated
here.

INTRODUCTION

The finite element. method is one of the most
powerful and versatile methods for the accurate

solution of a wide variety of optical waveguide
problems [1-3]. This method is capable of
considering waveguide with arbitrary cross-section

and material distribution in the transverse plane,
where most of the alternative methods are unable to

handle such a general problem. A vector H-field

formulation considers truly hybrid mode without any

fundamental approximation and can tackle general

anisotropic materials like LiNb03, only limited in

being lossless. Earlier we have introduced infinite

elements [4] to extend the problem domain up to

infinity without introducing artificial boundary

walls, which is very useful for open type optical

waveguides. We have also used a penalty method [5]
to force divergence free field conditions to

eliminate spurious solutions and improve
eigenvectors quality. We are here presenting a

novel technique to solve such a wide variety of

discontinuity problems - by combining the vector H-

field finite element method to solve for
eigenvalues and eigenvectors of many modes with

field matching at the discontinuity plane, which is

done by accurate least square boundary residual

method. In this paper we are also presenting the

analyses of a few types of the basic

discontinuities involving rib waveguides.

FINITE ELEMENT METHOD

In the finite
discretise the entire
number of triangular

element method we first
problem domain into a finite

subregions, called elements

[4]. For our H-field formulation
functions Hx, liy, and Hz are defined by

polynomials over each element in the

the field

a set of

transverse

plane. In the original variational form [4] it

finds the stationary solution for the frequency for

a given propagation constant. The vector program

can also be switched to the approximate scalar TE

or TM mode solution for the convenience of faster

and more automatic solution.

Infinite Elements

We have use~nite elements around the orthodox

finite domain boundary. Inside these infinite

elements we consider exponential decay in outward

directions to represent field components that are

continuous functions over’ the whole unbounded

cross-section. This allows us to use the orthodox

(finite) mesh divisions most efficiently. The decay
parameters are automatically calculated in the

first run of the program and can be used for

subsequent refined solutions.

Penalty !fethod

We have imp=d a divergence free constraint on the

H-field by using a penalty technique [5,61. A
variable penalty parameter imposes the divergence

free constraint in a least-squares sense. This

technique does not take any additional computer

space, but removes non-physical spurious solutions

and improves the eigenvector quality appreciably

[51.

Computer Solution

When the extremum functional is minimised with

respect to the nodal field components, it generates

a set of linear algebraic eigenvalue equations. We
have taken advantage of the extreme sparsity of the

matrices by storing only the nonzeros of the
matrices. We used the efficient subspace iteration

technique for sparse matrices, taking advantage of

the symmetry of the transformed real matrices.

LEAST SQUARE BOUNDARY RESIDUAL METHOD

For the calculation of scattering coefficients

from a junction of dissimilar waveguides we have

used the least square boundary residual method

[7,81 which matches field continuity conditions
over the junction plane in a least square sense.

This powerful method provides guaranteed
convergence and minimises the error in a global
sense. We can consider as many modes as we wish in

both sides of the discontinuity Plane. Then this

method provides the amplitudes of all the modes
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propagated or radiated, transmitted or reflected,

so as to have the least error in matching the

continuity conditions of the fields over the

junction plane.

Discontinuity Solution

The vector finite element method is used to

calculate as many medal eigenvectors as we wish to

consider on both sides of the discontinuity plane.

Here the modal eigenvectors are the three

components of the H-field at all the nodal points

of each ‘Ielementr!. We calculate for E and H the

field cross products [81 between different modes by

integrating over all elements nunerlcally. Finally
a Singular Value Decomposition subroutine

calculates the stationary solution of the modal

coefficients to have the least error in matching

the field continuity conditions over the junction

plane.

RESULTS

Waveguide Solutions

In this part we have shown the capabilities of

the finite element method by presenting solutions

for different types of optical waveguides and

devices.

a) Diffused channel waveguide: In this we

illustrated the solution of diffused channel
wavegulde. For this example we considered the

Gaussian y-dependence of refractive index, although

different types of diffusion in both the transverse

directions is possible. The refractive indices at

the guide top, bulk substrate, and cladding are

2.2913, 2.2853, and 1.0 respectively. Fig.1 shows

the variation of normalised propagation constant, b

( or V of ref. 1), for the Hy ,, and Hy21 modes for

different guide width, when the diffusion depth was

2.47 Ual. It shows that for W= 3ym, single mode

operation was for wavelength between 0.52 to 0.86
urn. When the guide width increased to 6 urn this

range changed 0.’75 urn to 1.0 um. Similarly when the

guide width was decreased to 2 urn then single mode

operation was for i from 0.40 urn to 0.76 um. It is
not shown here, but when we have changed the

diffusion depth to 3 pm then single mode operation
was between i= O.555pm to 0.95 urn for W- 3pm.

b) Effect of electrode: In this section we have

illustrated the effect of an electrode above or

below a rib waveguide. In this example we have

considered that the bottom electrode extends under

the whole substrate but the top electrode is only

above the rib and supported on a buffer material.

For this example we have considered the guide,

substrate, and cladding refractive indices were

3.W!, 3.434, and 1.0 respectively, where the buffer

refractive index was varied. The rib was 5 ~m wide

and 1 ~m high, the guide slab was 2.0 pm thick and

the operating wavelength was 1.15 pm. Fig. 2
illustrates the effect of the position of the two

electrodes on the normalised propagation constant,

b, for both Hxl, and Hyll modes. As the electrodes

are placed close to the rib top or bottom of the

guide slab, b for the Hxl, mode increases, whereas

for HY~, mode b decreases. The effect of the

electrode is also to increase the magnitude of the

Hx field at the electrode location for Hxll mode
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Fig.1 Single mode operation of diffused channel

waveguides.
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Fig.2 Effect of top and bottom electrodes for a rib

waveguide for H+, and H~, modes.

but forces the Hy field to zero for the HY,, mode.

In the above example the buffer refractive index
was 3.434. Fig. 3 illustrates the effect of the top

electrode position for the Hx,, mode for different

buffer materials. As the buffer refractive index
decreases, magnetic field above the guide also
decreases, thus reducing the effect of electrode
placement.
c) Directional coupler: In this section we have
presented the analysis of a directional coupler
problem. Here the separation distance, s, between

two identical rib waveguides are varied. In this

example the guide, substrate and cladding
refractive indices were 3.41, 3.3, and 1.o

respectively. The rib was 4 ~m wide and 0.1 ym high

and the guide slab was 0.6 um thick. Fig. 4 shows
the variation of the coupling length OetWef?tl the

guides with the separation distance, s, for two

different wavelengths 1.15 urn and 1.3 um.
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Fig.3 Effect of top electrode for different buffer

refractive indices for HI, mode.
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Fig.4 Variation of Coupling Length,

Separation, s, for a rib directional
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Lc with guide

coupler.

Discontinuity Solutions

a) Vertical misalignment: In this section we have
considered two identical rib waveguide joined

together with a vertical misalignment. For this
example, guide, substrate, and cladding refractive
indices were 3.4406, 3.4145 and 1.0 respectively.

The ribs were 20 pm wide and 5.0 urn high, the

guiding slabs were 0.5 um thick and the oPerating

wavelength was 1.55 m. These multimode guides can
support about 44 in total of quasi TE and quasi TM

modes with different x and y dependence. In this
example we have considered that Hy,, mode of unit

power amplitude is incident from side 1. At the

discontinuity plane many modes are generated to

satisfy the boundary conditions and they

propagated or radiated away from the junction.

5 illustratesH:he variation of amplitudes of
transmitted ., mode, and generated

transmitted Hyl, and Hy13 modes with the vert

misalignment.
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Fig.5 Vertical misalignment between two identical

rib waveguides.

b) Change in width: In this section we have
considered two guides differing in width which are
joined together. In this example we have considered

guide, substrate, and cladding refractive indices

were 3.44o6, 3.4145, and 1.0 respectively. Rib

heights were 1.0 urn, guiding slab thicknesses were

0.5 ~m and the wavelength was 1.55 pm. An Hy,, mode

of unit power was incident from side 1 , its width
kept fixed ( in this example either 20 pm or 12 Win).

Fig. 6 illustrates the variation of the power

transmitted in side 2 by the Hy,l mode with the
change in width of side 2. Extension of this type of

problem by considering many successive changes in

width, we can analyse taper optical waveguide or a

bend section.
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Fig.6 Change in width between two rib waveguides.

c) Change in rib height: In this section we have
considered junction between two rib waveguides
where rib heights were not the same. Here the



guide, substrate and cladding refractive indices

were 3.44, 3.434 and 1.0 respectively. The rib
widths were 5.0 Um, guide slab thicknesses were 2.0

~m and wavelength considered was 1.15 Pm. In this

example we have considered the Hxll mode of unit

power incident on the discontinuity plane from side
1 where rib height was fixed as 1.0 vm. Fig. 7

illustrates the variation of power transmitted by

the Hx,, mode in side 2 with the change of rib

height in side 2. Extension of this type of problem

by considering a periodic change of rib height may

represent gratings or optical filters.
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Fig.7 Change of rib height between two rib

waveguides.

In this paper first we have illustrated vector
H-field finite element solutions for a few-optical
waveguides. This method, taken along with infinite
elements and the penalty method is suitable for a
wide varieties of optical waveguides [1,3].
Previously we have also considered [11 waveguides
where the guide axes were not the same as the
optical axes. For the directional coupler prablems
the guides may not be symmetric or identical. It is
possible to extend this method to analyse electra-
optic devices. Guides with small loss can be
analysed by a perturbation technique or for guides
with considerable loss (or gain) by changing the
variational formulation to a suitable one.
Combining all these techniques with finite element
method we may be able to analyse more complicated
optical devices such as lasers or electro-aptic
switches and modulators.

In this paper we have also illustrated the
analyses of different types of discontinuities
between two rib waveguides, but this technique can
be equally applied to all types of optical
waveguides such as diffused channel waveguide or
optical fibres. Also the discontinuity may not be a
single type such as vertical or horizontal or
longitudinal misalignment but any combination of
them or two totally different types of guides or
devices. Similarly there may not be a single
discontinuity step but multiple steps, irregular or

periodic. Combining all these capabilities, it may

be possible to analyse a wide varieties of

structures from the simple design of an optimum

guide coupler to devices such as tapers, bends, y-

junctions, gratings ar filters.
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